Existence of an asymptotically almost periodic solution for a fractional semilinear problem
https://doi.org/10.26907/0021-3446-2024-9-45-55
Abstract
In this research, we consider the fractional semilinear problem in a sequentially compact Banach space $X$: $x^{\alpha}(t)=A(t)x(t)+f(t,x(t))$, $t\in \mathbb R^{+} $, with the initial condition $x(0)=x_{0}$, $ x_{0} \in X $, where $A$ is the generator of an evolution system $({U(t,s)})_{t\leq s \leq {0}}$ and $f$ is a given function satisfying some assumptions. We study this fractional semilinear integro-differential equation and examine when it has an asymptotically almost periodic solution.
About the Authors
S. MaghsoodiIslamic Republic of Iran
Soheyla Maghsoodi
Babolsar
A. Neamaty
Islamic Republic of Iran
Abdolali Neamaty
Babolsar
References
1. Bohr H. Zur Theorie der fastperiodischen Funktion. I, Acta Math. 45, 29–127 (1924).
2. Bohr H. Zur Theorie der fastperiodischen Funktion. II, Acta Math. 46, 101–204 (1925).
3. Bohr H. Zur Theorie der fastperiodischen Funktion. III, Acta Math. 47, 237–281 (1926).
4. Bochner S. A new approach to almost periodicity, Proc. Natl. Acad. Sci. USA 48 (12), 2039–2043 (1962).
5. Bochner S. Continuous mappings of almost automorphic and almost periodic functions, Proc. Natl. Acad. Sci. USA 52 (4), 907–910 (1964).
6. Henr´iquez H.R., DeAndrade B., Rabelo B. Existence of almost periodic solutions for a class of abstract impulsive differential equations, ISRN Math. Anal., article 632687 (2011), DOI: 10.5402/2011/632687.
7. Herna´ndez E., Dos Santos J.P. Asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations, Elec. J. Diff. Equat. 38, 1–8 (2006).
8. Li T., Viglialoro G. Boundedness for a nonlocal reaction chemotaxis model even in the attraction-dominated regime, Diff. and Integral Equat. 34 (5–6), 315–336 (2021).
9. Besicovitch A.S. Almost periodic functions (Dover Publ., INC, 1954).
10. Corduneanu C. Almost Periodic Functions, 2nd ed. (Chelsea Publ. Company, New York, 1989).
11. Fischer A. Approximation of almost periodic functions by periodic ones, Czechoslovak Math. J. 48 (123), 193–205 (1998).
12. Zhang C. Ergodicity and asymptotically almost periodic solutions of some differential equations, Int. J. Math. Sci. 25 (12), 787–800 (2001).
13. Ahn V., Mcvinish R. Fractional differential equations driven by L´evy noise, J. Appl. Math. Stoch. Anal. 16 (2), 97–119 (2003).
14. Benson D.A. The Fractional Advection-Dispersion Equation, PhD Thesis (University of Nevada, Reno, 1998).
15. Schumer R. Eulerian derivative of the fractional advection-dispersion equation, J. Contam. Hydrol. 48 (1–2), 69–88 (2001).
16. Sayed A. Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (2), 181–186 (1998).
17. Ling Y., Ding S. A class of analytic functions defined by fractional derivation, J. Math. Anal. Appl. 186 (2), 504–513 (1994).
18. N’Guerekata G.A. Cauchy problem for some fractional abstract differential equation with nonlocal conditions, Nonlinear Anal. Theory Methods Appl. 70 (5), 1873–1876 (2009).
19. Lahshmikantham V. Devi J. Theory of fractional differential equations in Banach spaces, Eur. J. Pure Appl. Math. 1, 38–45 (2008).
20. Maghsoodi S., Neamaty A. Existence of almost periodic solution for nonlocal fractional Cauchy problem with integral initial condition, Tbilisi Math. J. 14 (3), 163–170 (2021), DOI: 10.32513/tmj/19322008150.
21. Jawahdou A. Mild solutions of fractional semilinear integro-differential equations on an unbounded interval, Appl. Math. 4 (07), 34–39 (2013), DOI: 10.4236/am.2013.47A007.
22. Lassoud D., Shah R., Li T. Almost periodic and asymptotically almost periodic functions: Part I, Adv. Diff. Equat. (2018), DOI: 10.1186/s13662-018-1487-0.
23. Fink A.M. Almost periodic differential equations, Lect. Notes in Math. 377 (Springer-Verlag, Berlin–New York, 1974).
Review
For citations:
Maghsoodi S., Neamaty A. Existence of an asymptotically almost periodic solution for a fractional semilinear problem. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(9):45-55. (In Russ.) https://doi.org/10.26907/0021-3446-2024-9-45-55