An oscillation inequality on a complex Hilbert space
https://doi.org/10.26907/0021-3446-2024-9-16-21
Abstract
Let $T$ be a contraction on a complex Hilbert space $\mathcal{H}$, and for $f\in \mathcal{H}$ define $$A_n(T)f=\frac{1}{n}\sum_{j=1}^nT^jf.$$ Let $(n_k)$ be an increasing sequence and $M$ be any sequence. We prove that there exists a positive constant $C$ such that $$\ang(\sum_{k=1}^\infty\sup_{\substack{n_k\leq m< n_{k+1}\\m\in M}}\|A_m(T)f-A_{n_k}(T)f\|_{\mathcal{H}}^2\ang)^{1/2}\leq C\|f\|_{\mathcal{H}}$$ for all $f\in \mathcal{H}$.
References
1. Lifshits M., Weber M. Spectral regularization inequalities, Math. Scandinavica 86 (1), 75–99 (2000).
2. Demir S. Inequalities for square functions induced by operators on a Hilbert space, Int. J. Stat. Appl. Math. 3 (5), 140–143 (2018).
3. Krengel U. Ergodic theorems (Walter de Gruyter, Berlin & New York, 1985).
Review
For citations:
Demir S. An oscillation inequality on a complex Hilbert space. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(9):16-21. (In Russ.) https://doi.org/10.26907/0021-3446-2024-9-16-21