Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Integrability and Boas type results for a generalized Fourier–Bessel transform

https://doi.org/10.26907/0021-3446-2024-9-3-15

Abstract

We obtain sufficient conditions for weighted integrability of a generalized Fourier–Bessel transform of functions from generalized integral Lipschitz classes. These conditions are analogues of the well known Moricz conditions for classical Fourier transform. Also a Boas type result connecting the behavior of a function and the smoothness of its generalized Fourier–Bessel transform is proved.

About the Author

S. S. Volosivets
Saratov State University
Russian Federation

Sergey Sergeevich Volosivets

83 Astrakhanskaya str., Saratov, 410012



References

1. Титчмарш Е. Введение в теорию интегралов Фурье (ГИТТЛ, М.-Л., 1948).

2. Butzer P.L., Nessel R.J. Fourier analysis and approximation (Birkha¨user, Basel-Stuttgart, 1971).

3. Бари Н.К., Стечкин С.Б. Наилучшие приближения и дифференциальные свойства двух сопряженных функций, Тр. Моск. матем. об-ва 5, 483–522 (1956).

4. Mo´ricz F. Best possible sufficient conditions for the Fourier transform to satisfy the Lipschitz or Zygmund conditions, Studia Math. 199 (2), 199–205 (2010).

5. Krayukhin S.A., Volosivets S.S. Functions of bounded p-variation and weighted integrability of Fourier transforms, Acta Math. Hung. 159 (2), 374–399 (2019).

6. Gogoladze L., Meskhia R. On the absolute convergence of trigonometric Fourier series, Proc. A Razmadze Math. Inst. 141 (5), 29–40 (2006).

7. Mo´ricz F. Sufficient conditions for the Lebesgue integrability of Fourier transforms, Anal. Math. 36 (2), 121–129 (2010).

8. Boas R.P. Beurling’s test for absolute convergence of Fourier series, Bull. Amer. Math. Soc. 66 (1), 24–27 (1960).

9. Platonov S.S. On the Hankel transform of functions from Nikol’skii classes, Integral Transforms Spec. Funct. 32 (10), 823–838 (2021).

10. Daher R., Tyr O. Integrability of the Fourier–Jacobi transform of functions satisfying Lipschitz and DiniLipschitz-type estimates, Integral Transforms Spec. Funct. 33 (2), 115–126 (2023).

11. Volosivets S. Weighted integrability of Fourier–Dunkl transforms and generalized Lipschitz classes, Anal. Math. Phys. 12 (5), 115 (2022).

12. Volosivets S.S. Weighted integrability of Fourier–Jacobi transforms, Integral Transforms Spec. Funct. 34 (6), 431–443 (2023).

13. Volosivets S.S. Boas type and Titchmarsh type theorems for generalized Fourier–Bessel transform, J. Math. Sci. 271 (2), 115–125 (2023).

14. Al Subaie R.F., Mourou M.A. The continuous wavelet transform for a Bessel type operator on the half line, Math. Stat. 1 (4), 196–203 (2013).

15. Берг Й., Лефстрем Й. Интерполяционные пространства. Введение (Мир, М., 1980).

16. Trimeche K. Generalized harmonic analysis and wavelet packets (CRC Press, Boca-Raton, 2018).

17. Платонов С.С. Гармонический анализ Бесселя и приближение функций на полупрямой, Изв. РАН. Сер. матем. 71 (5), 149–196 (2007).

18. Платонов С.С. Обобщенные сдвиги Бесселя и некоторые проблемы теории приближений в метрике L2. II, Тр. ПГУ. Сер. матем. (8), 20–36 (2001).

19. Абилов В.А., Абилова Ф.В. Приближение функций суммами Фурье–Бесселя, Изв. вузов. Матем. (8), 3–9 (2001).

20. Volosivets S.S. Fourier-Bessel transforms and generalized uniform Lipschitz classes, Integral Transforms Spec. Funct. 33 (7), 559–569 (2022).

21. Kinukawa M. Contraction of Fourier coefficients and Fourier integrals, J. Anal. Math. 8, 377–406 (1960).


Review

For citations:


Volosivets S.S. Integrability and Boas type results for a generalized Fourier–Bessel transform. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(9):3-15. (In Russ.) https://doi.org/10.26907/0021-3446-2024-9-3-15

Views: 127


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)