On the function spaces of general weights
https://doi.org/10.26907/0021-3446-2025-12-40-70
Abstract
The aim of this paper is twofold. First, we establish the ^-transform characterizations of the Besov spaces Bp,q (Rn, {tk}) and the Triebel-Lizorkin spaces Fp,q (Rn, {tk}) for q = to, in the sense of Frazier and Jawerth. Second, under some suitable assumptions on a padmissible weight sequence {tk}, we prove that Ap,q (Rn, {tk }) = Ap,q (Rn,tj), j ϵ Z, in the sense of equivalent quasi-norms, with A ϵ {B,F}. Moreover, we find a necessary and sufficient condition for the coincidence of the spaces Ap,q (Rn,ti), i ϵ {1, 2}.
References
1. Cobos F., Fernandez D.L. Hardy–Sobolev spaces and Besov spaces with a function parameter, Funct. Spaces Appl. 1302, 158–170 (1986).
2. Гольдман М.Л. Описание следов для некоторых функциональных пространств, Тр. МИАН СССР, 150, 99–127 (1979).
3. Гольдман М.Л. Метод покрытий для описания общих пространств типа Бесова, Тр. МИАН СССР, 156, 47–81 (1980).
4. Калябин Г.А. Описания функций из классов типа Бесова–Лизоркина–Трибеля, Тр. МИАН СССР, 156, 82–109 (1980).
5. Kalyabin G.A., Lizorkin P.I. Spaces of functions of generalized smoothness, Math. Nachr. 133 (1), 7–32 (1987).
6. Бесов О.В. Эквивалентные нормировки пространств функций переменной гладкости, Функц. пространства, прибл., дифф. урав. Сб. статей. К 70-летию со дня рождения чл.-корр. РАН Олега Владимировича Бесова, Тр. МИАН, 243, 87–95 (2003).
7. Бесов О.В. Об интерполяции, вложении и продолжении пространств функций переменной гладкости, Докл. АН, 401 (1), 7–11 (2005).
8. Бесов О.В. Интерполяция, вложение и продолжение пространств функций переменной гладкости, Исследов. по теории функц. и дифф. урав. Сб. статей. К 100-летию со дня рожд. ак. Сергея Михайловича Никольского, Тр. МИАН, 248, 47–58 (2005).
9. Bony J-M. Second microlocalization and propagation of singularities for semi-linear hyperbolic equations, Taniguchi Symp. HERT, 11–49, Katata (1986).
10. Kempka H. Generalized 2-microlocal Besov spaces, PhD thesis (Friedrich-Schiller-Universit¨at, Jena, 2008).
11. Dominguez O., Tikhonov S. Function spaces of logarithmic smoothness: embeddings and characterizations, Mem. Amer. Math. 282 (1393) (2023).
12. Ansorena J.L., Blasco O. Atomic decomposition of weighted Besov spaces, J. Lond. Math. Soc. 53 (1), 127–140 (1996).
13. Almeida A. Wavelet bases in generalized Besov spaces, J. Math. Anal. Appl. 304 (1), 198–211 (2005).
14. Bownik M., Ho K.-P. Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces, Trans. Amer. Math. Soc. 358 (4), 1469–1510 (2006).
15. Farkas W., Leopold H.-G. Characterisations of function spaces of generalised smoothness, Annali di Mat. Pura Appl. 185 (1), 1–62 (2006).
16. Haroske D.D., Moura S.D. Continuity envelopes and sharp embeddings in spaces of generalized smoothness, J. Funct. Anal. 254 (6), 1487–1521 (2008).
17. Edmunds D., Triebel H. Spectral theory for isotropic fractal drums, C.R. Acad. Sci. Ser. I. Math., 326 (11),1269–1274 (1998).
18. Edmunds D., Triebel H. Eigenfrequencies of isotropic fractal drums, Oper. Theory: Adv. & Appl. 110, 81–102 (1999).
19. Moura S.D. Function spaces of generalised smoothness, Diss. Math. 398, 1–88 (2001).
20. Тюленев А.И. О некоторых новых пространствах функций переменной гладкости, Матем. сб. 206 (6), 85–128 (2015).
21. Drihem D. Besov spaces with general weights, J. Math. Study. 56 (1), 18–92 (2023).
22. Drihem D. Triebel-Lizorkin spaces with general weights, Adv. Oper. Theory. 8, article 5 (2023).
23. Muckenhoupt B. Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165, 207–226 (1972).
24. Garc˙ıa-Cuerva J., Rubio de Francia J.L. Weighted norm inequalities and related topics, North-Holland Math. Stud. 116, Math. Notes, 104 (North-Holland Publishing Co., Amsterdam, 1985).
25. Grafakos L. Classical Fourier Analysis, Third Edition, Graduate Texts Math. 249 (Springer, New York, 2014).
26. Tyulenev A.I. Besov-type spaces of variable smoothness on rough domains, Nonlinear Anal. 145, 176–198 (2016).
27. Tyulenev A.I. On various approaches to Besov-type spaces of variable smoothness, J. Math. Anal. Appl. 451 (1), 371–392 (2017).
28. Fefferman C., Stein E.M. Some maximal inequalities, Amer. J. Math. 93 (1), 107–115 (1971).
29. Benedek A., Calder´on A.-P., Panzone R. Convolution operators on Banach space valued functions, Proc. Nat. Acad. Sci. U.S.A. 48 (3), 356–365 (1962).
30. Grafakos L., Liu L., Yang D. Vector-valued singular integrals and maximal functions on spaces of homogeneous type, Math. Scand. 104 (2), 296–310 (2009).
31. Andersen K., John R.Weighted inequalities for vector-valued maximal functions and singular integrals, Studia Math. 69, 19–31 (1980).
32. Кокилашвили В.М. Максимальные неравенства и мультипликаторы в весовых пространствах Лизоркина–Трибеля, Докл. АН СССР, 239 (1), 42–45 (1978).
33. Frazier M., Jawerth B., Weiss G. Littlewood–Paley Theory and the Study of Function Spaces. CBMS Regional Conf. Ser. Math. (79). Published for the Conference Board of the Mathematical Sciences. Amer. Math. Soc. (Providence, 1991).
34. Drihem D. Duality of Triebel-Lizorkin spaces with general weights. arXiv:2402.04635v1 (2024).
35. Frazier M., Jawerth B. Decomposition of Besov spaces, Indiana Univ. Math. J. 34, 777–799 (1985).
36. Frazier M., Jawerth B. A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1), 34–170 (1990).
37. Triebel H. Theory of function spaces (Birkh¨auser Verlag, Basel, 1983).
38. Bui H.Q. Weighted Besov and Triebel spaces: interpolation by the real method, Hiroshima Math. J. 12 (3), 581–605 (1982).
39. Tang C. A note on weighted Besov-type and Triebel–Lizorkin-type spaces, J. Funct. Spaces Appl. 2013, article ID 865835.
40. Drihem D. Complex interpolation of function spaces with general weights, Comment. Math. Univ. Carolin. 64 (3) 289–320 (2023).
41. Str¨ombergJ .-O., Torchinsky A. Weighted Hardy spaces, Lect. Notes Math. 1381 (Springer-Verlag, Berlin, 1989).
42. Kuhn Th., Leopold H.-G., Sickel W., Skrzypczak L. Entropy numbers of embeddings of weighted Besov spaces. II, Proc. Edinburgh Math. Soc. 49 (2), 331–359 (2006).
43. Meyries M., Veraar M. Characterization of a class of embeddings for function spaces with Muckenhoupt weights, Arch. Math. 103 (5), 435–449 (2014).
44. Haroske D.D., Skrzypczak L. Entropy and approximation numbers of embeddings of function spaces with Muckenhoupt weights. I, Rev. Mat. Complut. 21 (1), 135–177 (2008).
45. Grafakos L. Modern Fourier Analysis, Second Edition, Graduate Texts Math. 250 (Springer, New York, 2009).
46. Бочкарев С.В. Ряды Валле–Пуссена в пространствах BMO, L1 и H1 (D), и мультипликативные неравенства, Теор. функц. и дифф. урав. Сб. статей. К девяностолетию со дня рожд. ак. Сергея Михайловича Никольского, Тр. МИАН, 210, 41–64 (1995).
Review
For citations:
Drihem D. On the function spaces of general weights. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(12):40-70. (In Russ.) https://doi.org/10.26907/0021-3446-2025-12-40-70
JATS XML





















