Модули, близкие к квазидискретным
https://doi.org/10.26907/0021-3446-2025-10-83-87
Аннотация
Квазидискретные и п-проективные модули являются важными и хорошо изученными классами модулей, определения которых двойственны к эквивалентным характеризациям понятия квазинепрерывного модуля. Вводятся и изучаются новые классы модулей, которые также являются двойственными аналогами понятия квазинепрерывного модуля.
Об авторе
Тиен Дат БуйВьетнам
Буй Тиен Дат
ул. Нгуен Ван Ку, д. 256, г. Кантхо
Список литературы
1. Mohammed S.H., M¨uller B.J. Continous and discrete modules, London Math. Soc. Lect. Note Ser. 147 (Cambridge Univ. Press, 1990).
2. Wisbauer R. Foundations of module and ring theory (Gordon and Breach Sci. Publ. Read., Univ. D¨usseldorf, 1991).
3. Clark J., Lomp C., Vanaja N., Wisbauer R. Lifting Modules: Supplements and projectivity in module theory, Frontiers in Mathematics (Birkhauser Verlag, Basel, 2006).
4. Srivastava A.K., Tuganbaev A.A., Asensio P.A.G. Invariance of modules under automorphisms of their envelopes and covers, V. 466 (Cambridge Univ. Press, 2021).
5. Abyzov A.N., Bui T.D., Truong C.Q. Dual-ADS, ADS# and ADS* modules, Acta Math. Vietnam 50, 101–121 (2025).
6. T¨ut¨unc¨u D.K. A note on ADS* modules, Bull. Math. Sci. 2, 359–363 (2012).
7. Dung N.V. Modules with indecomposable decompositions that complement maximal direct summands, J. Algebra 197, 449–467 (1997).
Рецензия
Для цитирования:
Буй Т. Модули, близкие к квазидискретным. Известия высших учебных заведений. Математика. 2025;(10):83-87. https://doi.org/10.26907/0021-3446-2025-10-83-87
For citation:
Bui T. Modules close to quasi-discrete. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(10):83-87. (In Russ.) https://doi.org/10.26907/0021-3446-2025-10-83-87





















