Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Classical non-negative solutions for one-dimensional Vlasov equation

https://doi.org/10.26907/0021-3446-2025-10-50-63

Abstract

New fixed point approach based on certain topological properties is applied on the Vlasov equation to find classical non-negative solutions. This approach allows finding at least one solution and at least two solutions. It is shown how to apply this approach to the problem of finding classical non-negative solutions of the Vlasov equation.

About the Authors

A. Boukarou
University of Science and Technology Houari Boumediene
Algeria

Aissa Boukarou

Bab Ezzouar, 16000



S. G. Georgiev
Sorbonne University
France

Svetlin G. Georgiev

Paris, 75005



K. Bouhali
Qassim University
Saudi Arabia

Keltoum Bouhali

Buraydah, 51452



Kh. Zennir
Qassim University
Saudi Arabia

Khaled Zennir

Buraydah, 51452



References

1. Власов А.В. О вибрационных свойствах электронного газа, ЖЭТФ 8 (3), 291–318 (1968).

2. Bogolyubov N.N. Studies in statistical mechanics, V. 1 (North-Holland, Amsterdam; Interscience, New York, 1962).

3. Fijalkow E. Numerical solution to the Vlasov equation: The 1D code, Comput. Phys. Commun. 116 (2–3), 329–335 (1999).

4. Trocheris M. On the derivation of the one dimensional Vlasov equation, Transp. Theory Stat. Phys. 15 (5), 597–628 (1986).

5. Власов А.А. Нелокальная статистическая механика (Наука, M., 1978).

6. Cottet G.H., Raviart P.A. Particle methods for the one-dimensional Vlasov–Poisson equations, SIAM J. Numer. Anal. 21 (1), 52–76 (1984).

7. Lee F.M., Shadwick B.A. Cauchy-type integral method for solving the linearized one-dimensional Vlasov– Poisson equation, Phys. Rev. E. 107, L063201 (2023).

8. Yen R.N.V., Sonnendrucker E., Schneider K., Farge M. Particle-in-wavelets scheme for the 1D Vlasov–Poisson equations, ESAIM: Proc. 32, 134–148 (2011).

9. Georgiev S., Zennir Kh. Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs (Chapman and Hall/CRC, New York, 2020).

10. Georgiev S., Zennir Kh. Classical solutions for a class of IVP for nonlinear two-dimensional wave equations via new fixed point approach, Part. Diff. Equat. Appl. Math. 2, 100014 (2020).

11. Georgiev S., Zennir Kh. Existence of solutions for a class of nonlinear impulsive wave equations, Ricerche Matem. 71, 211–225 (2022).

12. Ahmad N., Al-Rawashdeh A., Mehmood N. et al. Fixed points of monotone mappings via generalized-measure of noncompactness, Vietnam J. Math. 50, 275–285 (2022).

13. Himonas A.A., Yan F. On well-posedness of nonlocal evolution equations, Vietnam J. Math. 51, 811–844 (2023).

14. Taiwo A., Mewomo O.T. Inertial-viscosity-type algorithms for solving generalized equilibrium and fixed point problems in Hilbert spaces, Vietnam J. Math. 50, 125–149 (2022).

15. Mellet A., Mischler S. Uniqueness and semigroup for the Vlasov equation with elastic-diffusive reflexion boundary conditions, Appl. Math. Lett. 17, 827–832 (2004).

16. Agarwal R.P., Meehan M., O’Regan D. Fixed point theory and applications, V. 12 (Cambridge Univ. Press, 2001).

17. Djebali S., Mebarki K. Fixed point index theory for perturbation of expansive mappings by k-set contractions, Topol. Methods Nonlinear Anal. 54 (2A), 613–640 (2019).

18. Mouhous M., Georgiev S., Mebarki K. Existence of solutions for a class of first order boundary value problems, Arch. Math. 58, 141–158 (2022).

19. Полянин А.Д., Манжиров А.В. Справочник по интегральным уравнениям: Точные решения (Факториал, М., 1998).

20. Jeans J. On the theory of star-streaming and the structure of the universe, Mon. Not. Roy. Astron. Soc. 76 (71), 799–814 (1915).


Review

For citations:


Boukarou A., Georgiev S.G., Bouhali K., Zennir Kh. Classical non-negative solutions for one-dimensional Vlasov equation. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(10):50-63. (In Russ.) https://doi.org/10.26907/0021-3446-2025-10-50-63

Views: 94


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)