Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Estimation of survival function of response under partially-informative random censoring of observations

https://doi.org/10.26907/0021-3446-2025-10-3-17

Abstract

The paper investigates the asymptotic properties of a nonparametric estimator of the survival function of a random response in a regression model when the observations are subject to partially informative random censoring from the right.

About the Author

A. A. Abdushukurov
Tashkent Branch of Lomonosov Moscow State University
Uzbekistan

Abdurakhim A. Abdushukurov

22 A. Temur Ave., Tashkent, 100060 



References

1. Stone J.S. Consistent nonparametric regression, Ann. Stat. 5 (4), 595–645 (1977).

2. Gasser T., M¨uller H.G. Kernel estimation of regression function (Springer, 1977).

3. Aerts M., Jansen P., Veraverbeke N. Asymptotic theory for regression quantile estimators in the heterodastic regression model, Asympt. Stat., 151–161 (Springer, 1994).

4. Acritas M.G. Van Keilegom I. Nonparametric estimation of residual estimation, Scand. J. Stat. 28 (3), 549– 567 (2001).

5. Beran R. Nonparametric regression with randomly censored survival data. Technical Report (Berkeley, California, 1981).

6. Veraverbeke N., Cadarso-Suares C. Estimating of the conditional distribution in conditional Koziol–Green model, Test 9 (1), 97–122 (2000).

7. Van Keilegom I., Veraverbeke N. Uniform strong consistency for the conditional Kaplan–Meier estimator and its quantiles, Commun. Stat. Theory Meth. 25, 2251–2265 (1995).

8. Van Keilegom I., Veraverbeke N. Estimating and bootstrap with censored data in fixed design nonparametric regression, Ann. Inst. Stat. Math. 49 (3), 467–491 (1997).

9. Breakers R. Regression problems with partially informative or dependent censoring (Limburgs Univ. Centrum, 2004).

10. Breakers R., Veraverbeke N. A copula-grafic estimator for the conditional survival function under dependent censoring, Stat. Probab. Lett. 33 (3), 429–447 (2005).

11. Breakers R., Veraverbeke N. A conditional Koziol–Green model under censoring, Stat. Prob. Lett. 78 (7), 927–937 (2007).

12. Cs¨org˝o S. Estimating in proportional hazards model of random censorship, Stat. 19 (3), 437–463 (1988).

13. Abdushukurov A.A. Nonparametric estimation of the distribution function based on relative-risk function, Commun. Stat. Theor. Meth. 27 (8), 1091–2012 (1998).

14. Abdushukurov A.A. On nonparametric estimation of reliability indices by censored samples, Theory Prob. Appl. 43 (1), 116–122 (1999).

15. Abdushukurov A.A., Makhmudova D. Semiparametric estimation of distribution function in the informative model of competing risks, J. Math. Sci. 227 (2), 117–123 (2017).

16. Abdushukurov A.A., Abdikalikov F.A. Estimation of conditional distribution function under nonparametric regression with fixed design, J. Math. Sci. 267 (1), 181–189 (2022).

17. Abdushukurov A.A. Estimation of conditional survival function under dependent random censored data, Austrian J. Stat. 49, 1–8 (2020).

18. Абдушукуров А.А. Оценки неизвестных распределений по неполным наблюдениям и их свойства (Lambert Acad. Publ., 2011).

19. Биллингсли П. Сходимость вероятностных мер, Пер. с англ. (Наука, М., 1977).

20. Abdushukurov A.A., Abdikalikov F.A. On a special empirical processes of independence in presence of covariates, Журн. СФУ. Сер. Матем. и физ. 16 (1), 66–75 (2023).


Review

For citations:


Abdushukurov A.A. Estimation of survival function of response under partially-informative random censoring of observations. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(10):3-17. (In Russ.) https://doi.org/10.26907/0021-3446-2025-10-3-17

Views: 40


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)