

Accuracy estimates of regularization methods and the well-posedness of nonlinear constrained optimization problems
https://doi.org/10.26907/0021-3446-2025-8-17-33
Abstract
We consider the problem of minimizing a nonlinear functional on a closed set in a Hilbert space. The functional to be minimized and the admissible set may be specified with errors. It is established that a necessary and sufficient condition for the existence of regularization procedures with an accuracy estimate uniform across different classes of functionals and admissible sets is the uniform well-posedness of these classes of minimization problems. A necessary and sufficient condition for the existence of a regularizing operator that does not use information about the error level of the input data is obtained. The proofs partially rely on the variational principles of Ekeland and Borwein–Preiss. Similar results were previously known for regularization procedures for ill-posed inverse problems, as well as for unconstrained optimization problems.
About the Author
M. Yu. KokurinRussian Federation
Mikhail Yurjevich Kokurin
1 Lenin sqr., Yoshkar-Ola, 424001
References
1. Васильев Ф.П. Методы решения экстремальных задач (Наука, М., 1981).
2. Васильев Ф.П. Методы оптимизации (Факториал Пресс, М., 2002).
3. Kaplan A., Tichatschke R. Stable Methods for Ill-Posed Variational Problems (Akad. Verlag, Berlin, 1994).
4. Тихонов А.Н., Леонов А.С., Ягола А.Г. Нелинейные некорректные задачи (Наука, М., 1995).
5. Бакушинский А.Б., Гончарский А.В. Итеративные методы решения некорректных задач (Наука, М., 1989).
6. Кокурин М.Ю. "Об условно-корректных и обобщенно-корректных задачах", Ж. вычисл. матем. и матем. физ. 53 (6), 857-866 (2013).
7. Kokurin M.Yu. "On a characteristic property of conditionally well-posed problems", J. Inv. Ill-Posed Probl. 23 (3), 245-262 (2015).
8. Кокурин М.Ю. Элементы общей теории регуляризации некорректных задач (ИКИ, М.-Ижевск, 2023).
9. Обэн Ж.-П., Экланд И. Прикладной нелинейный анализ (Мир, М., 1988).
10. Иоффе А.Д., Тихомиров В.М. "Несколько замечаний о вариационных принципах", Матем. заметки 61 (2), 305-311 (1997).
11. Borwein J.M., Zhu Q.J. Techniques of Variational Analysis (Springer, Berlin, 2005).
Review
For citations:
Kokurin M.Yu. Accuracy estimates of regularization methods and the well-posedness of nonlinear constrained optimization problems. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;1(8):17-33. (In Russ.) https://doi.org/10.26907/0021-3446-2025-8-17-33