

Oscillation inequalities on real and ergodic H1 spaces. II
https://doi.org/10.26907/0021-3446-2025-6-32-44
Abstract
Let $(x_n)$ be a sequence and $\rho\geq 1$. For two fixed sequences $n_1<n_2<n_3<\dots$, and $M$ define the oscillation operator
$$\mathcal{O}_\rho (x_n)=(\sum_{k=1}^\infty\sup_{\substack{n_k\leq m< n_{k+1}\\m\in M}}\left|x_m-x_{n_k}\right|^\rho)^{1/\rho}.$$
Let $(X,\mathscr{B} ,\mu , \tau)$ be a dynamical system with $(X,\mathscr{B} ,\mu )$ a probability space and $\tau$ a measurable, invertible, measure preserving point transformation from $X$ to itself.
Suppose that the sequence $(n_k)$ is a lacunary, and $M$ is any sequence of positive real numbers such that there exists an $\ell \in \mathbb{R}$ satisfying $\#\{m\in M:n_k\leq m<n_{k+1}\}\leq \ell$ for all $k\in \mathbb{N}$ to obtain the above mentioned results, where $\#$ denotes cardinality. Then the following results are proved in this article for $\rho\geq 2$.
(i) Define $\phi_n(x)=\dfrac{1}{n}\chi_{[0,n]}(x)$ on $\mathbb{R}$. Then there exists a constant $C>0$ such that $$\|\mathcal{O}_\rho (\phi_n\ast f)\|_{L^1(\mathbb{R})}\leq C\|f\|_{H^1(\mathbb{R})}$$
for all $f\in H^1(\mathbb{R})$.
(ii) Let $\displaystyle A_nf(x)=\frac{1}{n}\sum_{k=1}^nf(\tau^kx)$ be the usual ergodic averages in ergodic theory. Then $$\|\mathcal{O}_\rho (A_nf)\|_{L^1(X)}\leq C\|f\|_{H^1(X)}$$
for all $f\in H^1(X)$.
(iii) If $[f(x)\log (x)]^+$ is integrable, then $\mathcal{O}_\rho (A_nf)$ is integrable.
In the author's previously published article (S. Demir "Oscillation inequalities on real and ergodic $H^1$ spaces", Russ. Math. 67 (3), 42-52 (2023)) the above results have been obtained when both $(n_k)$ and $M$ are lacunary. Thus the results of this work extend those results to a nonlacunary sequence $M$ with a more general growth condition.
References
1. Гапошкин В.Ф. Одна теорема о сходимости почти всюду последовательности измеримых функций и ее применения к последовательностям стохастических интегралов, Матем. сб. 104 (1), 3–21 (1977).
2. Гапошкин В.Ф. Об индивидуальной эргодической теореме для нормальных операторов в L2, Функц. анализ и его прил. 15 (1), 18–22 (1981).
3. Jones R.L., Kaufman R., Rosenblatt J.M., Máté Wierdl Oscillation in ergodic theory, Ergodic Theory and Dynam. Sys. 18 (4), 889–935 (1998).
4. Демир С. Осцилляционные неравенства на вещественных и эргодических пространствах H1, Изв. вузов. Матем. (3), 52–62 (2023).
5. Demir S. A Generalizaition of Calderón Transfer Principle, J. Computer and Math. Sci. 9 (5), 325–329 (2018).
6. Caballero R., de la Torre A. An atomic theory of ergodic Hp spaces, Studia Math. 82 (1), 39–59 (1985).
7. Ornstein D. A remark on the Birkhoff ergodic theorem, Illinois J. Math. 15 (1), 77–79 (1971).
8. Demir S. Hp Spaces and Inequalities in Ergodic Theory, Ph.D Thesis (Univ. Illinois at Urbana-Champaign, USA, May 1999).
Review
For citations:
Demir S. Oscillation inequalities on real and ergodic H1 spaces. II. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(6):32-44. (In Russ.) https://doi.org/10.26907/0021-3446-2025-6-32-44