Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Spectral estimates for the bounds of an operator matrix of order three

https://doi.org/10.26907/0021-3446-2025-6-88-93

Abstract

In this paper we consider $3 \times 3$ operator matrix ${\mathcal A}_\mu$ with spectral parameter $\mu>0$ related with the Hamiltonian of a system with nonconserved and no more than three particles on a one-dimensional lattice. Essential and discrete spectra of the operator matrix ${\mathcal A}_\mu$ are described. It is established that the operator matrix ${\mathcal A}_\mu$ has at most four simple eigenvalues outside of the essential spectrum. Spectral estimates for the lower and upper bounds of the operator matrix ${\mathcal A}_\mu$ are obtained using cubic numerical range, Gershgorin enclosures and classical perturbation theory.

About the Authors

T. H. Rasulov
Bukhara State University
Uzbekistan

Tulkin H. Rasulov.

11 M. Ikbol str., Bukhara, 200118



M. Sh. Sharipova
Bukhara State University
Uzbekistan

Mubina Sh. Sharipova.

11 M. Ikbol str., Bukhara, 200118



References

1. Gustafson K.E., Rao D.K.M. Numerical Range. The Field of Values of Linear Operators and Matrices (Universitext. Springer, New York, 1997).

2. Toeplitz O. Das algebraische Analogon zu einem Satze von Fej´er, Math. Z. 2 (1–2), 187–197 (1918).

3. Hausdorff F. Der Wertvorrat einer Bilinearform, Math. Z. 3 (1), 314–316 (1919).

4. Wintner A. Zur Theorie der beschra¨nkten Bilinearformen, Math. Z. 30 (1), 228–281 (1929).

5. Langer H., Tretter C. Spectral decomposition of some nonselfadjoint block operator matrices, J. Oper. Theory 39, 339–359 (1998).

6. Kato T. Perturbation theory for linear operators (Classics Math., Springer, Berlin, 1995).

7. Langer H., Markus A., Matsaev V., Tretter C. A new concept for block operator matrices: the quadratic numerical range, Linear Algebra Appl. 330, 89–112 (2001).

8. Tretter C., Wagenhofer M. The Block Numerical Range of an n times n Block Operator Matrix, SIAM J. Matrix Anal. Appl. 24 (4), 1003–1017 (2003).

9. Rasulov T.H., Tretter C. Spectral inclusion for unbounded diagonally dominant n х n operator matrices, Rocky Mountain J. Math. 48 (1), 279–324 (2018).


Review

For citations:


Rasulov T.H., Sharipova M.Sh. Spectral estimates for the bounds of an operator matrix of order three. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(6):88-93. (In Russ.) https://doi.org/10.26907/0021-3446-2025-6-88-93

Views: 15


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)