Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold

https://doi.org/10.26907/0021-3446-2023-10-83-89

Abstract

A natural generalization of Killing vector fields are conformally Killing vector fields which play an important role in the study of the group of conformal transformations of manifolds, Ricci flows on manifolds, and the theory of Ricci solitons. In this paper, we study conformally Killing vector fields on 2-symmetric indecomposable Lorentzian manifolds. It is established that the conformal factor of the conformal analogue of the Killing equation on them depends on the behavior of the Weyl tensor. In addition, in the case when the Weyl tensor is equal to zero, non-trivial examples of conformally Killing vector fields with a variable conformal factor are constructed using the Airy functions.

About the Authors

M. E. Gnedko
Altai State University
Russian Federation

Maxim E. Gnedko.

61 Lenin Ave., Barnaul, 656049



D. N. Oskorbin
Altai State University
Russian Federation

Dmitry N. Oskorbin.

61 Lenin Ave., Barnaul, 656049



E. D. Rodionov
Altai State University
Russian Federation

Evgeny D. Rodionov.

61 Lenin Ave., Barnaul, 656049



References

1. Cahen M., Wallach N. Lorentzian symmetric spaces, Bull. Amer. Math. Soc. 76 (3), 585-591 (1970).

2. Alexeevskii D.V., Galaev A.S. Two-symmetric Lorentzian manifolds, J. Geometry and Phys. 61 (12), 2331 2340 (2011).

3. Sanchez M., Blanco O.F., Senovilla J.M.M. Structure of second-order symmetric Lorentzian manifold, J. Europ. Math. Soc. 15 (2), 595-634 (2013).

4. Galaev A.S., Leistner T. Holonomy groups of Lorentzian manifolds: classification, examples, and applications, Europ. Math. Soc. Publ. House, 53-96 (2008).

5. Оскорбин Д.Н., Родионов Е.Д. Солитоны Риччи и поля Киллинга на обобщенных многообразиях Кахена Уоллаха, Сиб. матем. журн. 60 (5), 1165-1170 (2019).

6. Walker A.G. On parallel fields of partially null vector spaces, The Quarterly J. Math. 20 (1), 135-145 (1949).

7. Brozos-Vázquez M., Garcia-Rio E., Gilkey P., Nikčević S., Vázquez-Lorenzo R. The Geometry of Walker Manifolds, Synthesis Lectures on Mathematics and Statistics (Morgan & Claypool Publ., California, 2009).

8. Wu H. On the de Rham decomposition theorem, Illinois J. Math. 8 (2), 291-311 (1964).

9. Hall G.S. Conformal symmetries and fixed points in space-time, J. Math. Phys. 31 (5), 1198-1207 (1990).

10. Blau M., O'Loughlin M. Homogeneous plane waves, Nuclear Physics 654 (1 2), 135-176 (2003).

11. Федорюк М. В. Математическая энциклопедия, 5-е изд., Советск. энциклопедия (1985).


Review

For citations:


Gnedko M.E., Oskorbin D.N., Rodionov E.D. On conformally Killing vector fields on a 2-symmetric indecomposable Lorentzian manifold. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;(10):83-89. (In Russ.) https://doi.org/10.26907/0021-3446-2023-10-83-89

Views: 85


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)