Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

A block projection operator in the algebra of measurable operators

https://doi.org/10.26907/0021-3446-2023-10-77-82

Abstract

Let τ be a faithful normal semifinite trace on a von Neumann algebra M. We investigate the block projection operator Pn (n ≥ 2) in the -algebra S(M, τ ) of all τ -measurable operators. We show that AnPn(A) for any operator A S(M, τ )+. If an operator A S(M, τ )+ is invertible in S(M, τ ) then Pn(A) is invertible in S(M, τ ). Consider A = A S(M, τ ). Then (i)   if Pn(A) ≤ A (or if Pn(A) ≥ A) then Pn(A) = A; (ii) Pn(A) = A if and only if PkA = APk for all k = 1, . . . , n; (iii) if  A,   n(A) are projections then n(A) = A. We obtain 4 corollaries. We also refined and reinforced one example from the paper “A. Bikchentaev, F. Sukochev, Inequalities for the block projection operators, J. Funct. Anal. 280 (7), article 108851, 18 p. (2021)”.

About the Author

A. M. Bikchentaev
Kazan Federal University
Russian Federation

Airat M. Bikchentaev.

18 Kremlyovskaya str., Kazan, 420008



References

1. Bikchentaev A., Sukochev F. Inequalities for the block projection operators, J. Funct. Anal. 280 (7), article 108851, 18 p. (2021).

2. Гохберг И.Ц., Крейн М.Г. Введение в теорию линейных несамосопряженных операторов в гильбертовом пространстве (Наука, М., 1965).

3. Бикчентаев А.М. Оператор блочного проектирования в нормированных идеальных пространствах измеримых операторов, Изв. вузов. Матем. (2), 86-91 (2012).

4. Bikchentaev A. Trace inequalities for Rickart C∗-algebras, Positivity 25 (5), 1943-1957 (2021).

5. Takesaki M. Theory of operator algebras. I. Encyclopaedia of Mathematical Sciences, 124. Operator Algebras and Non-commutative Geometry, 5 (Springer-Verlag, Berlin, 2002).

6. Kadison R.V., Ringrose J.R. Fundamentals of the theory of operator algebras. Vol. I. Elementary theory. (Graduate Studies in Mathematics, 15) (Amer. Math. Soc., Providence, R.I., 1997).

7. Маркус М., Минк Х. Обзор по теории матриц и матричных неравенств (Наука, М., 1972).

8. Chilin V., Krygin A., Sukochev F. Extreme points of convex fully symmetric sets of measurable operators, Integr. Equat. Oper. Theory 15 (2), 186-226 (1992).

9. Stroh A., West G.P. τ -compact operators affiliated to a semifinite von Neumann algebra, Proc. Roy. Irish Acad. Sect. A 93 (1), 73-86 (1993).


Review

For citations:


Bikchentaev A.M. A block projection operator in the algebra of measurable operators. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;(10):77-82. (In Russ.) https://doi.org/10.26907/0021-3446-2023-10-77-82

Views: 126


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)