

Further common spectral properties for some generalized inverses in a ring
https://doi.org/10.26907/0021-3446-2025-1-52-65
Abstract
Extensions of Cline’s formula for some new generalized inverses such as strong Drazin inverse, generalized strong Drazin inverse, Hirano inverse and generalized Hirano inverse are presented. These extend many known results, e.g., Z. Wu and Q. Zeng, Extensions of Cline’s formula for some new generalized inverses, Filomat 35, 477-483 (2021).
About the Author
S. HadjiMorocco
Soufiane Hadji.
PO Box 5118, Takaddoum, Rabat, 10105
References
1. Harte R. On quasinilpotents in rings, Panamer. Math. J. 1, 10-16 (1991).
2. Wang Z. A class of Drazin inverses in rings, Filomat 31 (6), 1781-1789 (2017).
3. Drazin M.P. Pseudo-inverse in associative rings and semigroups, Amer. Math. Monthly 65, 506-514 (1958).
4. Wu Z., Zeng Q. Extensions of Cline’s formula for some new generalized inverses, Filomat 35 (2), 477-483 (2021).
5. Chen H., Abdolyousefi M.S. On Hirano inverses in rings, Turkish J. Math. 43 (4), 2049-2057 (2019).
6. Mosic D. Reverse order laws for the generalized strong Drazin inverses, Appl. Math. Comput. 284 (2), 37-46 (2016).
7. Gurgiin O. Properties of generalized strongly Drazin invertible elements in general rings, J. Algebra Appl. 16 (11), 1750207 (2017).
8. Koliha J.J., Patricio P. Elements of rings with equal spectral idempotents, J. Aust. Math. Soc. 72 (1), 137-152 (2002).
9. Chen H., Sheibani M. Generalized Hirano inverses in rings, Commun. Algebra 47 (7), 2967-2978 (2019).
10. Wang Z., Chen J.L. Pseudo Drazin inverse in associative rings and Banach algebras, Linear Algebra Appl. 437 (6), 1332-1345 (2012).
11. Cline R.E. An application of representation for the generalized inverse of a matrix, MRC Techn. Report 592, 174-198 (1965).
12. Patricio P., Hartwig R.E. Some additive results on Drazin inverses, Appl. Math. Comput. 215 (2), 530-538 (2009).
13. Liao Y.H., Chen J.L., Cui J. Cline’s formula for the generalized Drazin inverse, Bull. Malays. Math. Sci. Soc. Ser. 2, 37 (1), 37-42 (2014).
14. Ren Y., Jiang L. Jacobson’s lemma for the generalized n-strong Drazin inverses in rings and in operator algebras, Glasnik Matem. 57 (1), 1-15 (2022).
15. Yan К., Zeng Q., Zhu Y. On Drazin spectral equation for the operator products, Complex Anal. Oper. Theory 14 (1) (2020).
16. Jiang Y., Wen Y., Zeng Q. Generalizations of Cline’s formula for three generalized inverses, Rev. Union Matem. Argentina 58 (1), 127-134 (2017).
17. Lian H.F., Zeng Q.P. An extension of Cline’s formula for a generalized Drazin inverse, Turk. J. Math. 40 (1), 161-165 (2016).
18. Hadji S., Zguitti H. Further common spectral properties of bounded linear operators AC and BD, Rend. Circ. Matem. Palermo, Ser. 2, 71 (4), 707-723 (2022).
19. Chen H., Abdolyousefi M.S Cline’s Formula for g-Drazin Inverses in a ring, Filomat 33 (8), 2249-2255 (2019).
20. Chen H., Abdolyousefi M.S. Generalized Cline’s formula for the generalized Drazin inverse in rings, Filomat 37 (10), 3021-3028 (2023).
21. Castro-Gonzalez N., Mendes-Araujo C., Patricio P. Generalized inverses of a sum in rings, Bull. Aust. Math. Soc. 82, 156-164 (2010).
22. Cvetkovic-Ilic D., Harte R. On Jacobson’s lemma and Drazin invertibility, Appl. Math. Lett. 23 (4), 417-420 (2010).
23. Lam T.Y., Nielsen P.P. Jacobson’s lemma for Drazin inverses, Contemp. Math.: Ring Theory Appl. 609, 185-196 (2014).
24. Patricio P., Veloso da Costa A. On the Drazin index of regular elements, Cent. Eur. J. Math. 7 (2), 200-205 (2009).
25. Zhuang G., Chen J., Cui J. Jacobson’s lemma for the generalized Drazin inverse, Linear Algebra Appl. 436 (3), 742-746 (2012).
26. Hadji S., Zguitti H. Back to the common spectral properties of operators satisfying AkBkAk = Ak+1 and BkAkBk = Bk+1, Asian-Eur. J. Math. 14 (10), 2150177 (2021).
27. Hadji S., Zguitti H. Jacobson’s Lemma for Generalized Drazin-Riesz Inverses, Acta Math. Sin. Engl. Ser. 39 (3), 481-496 (2023).
28. Miller V.G., Zguitti H. New extensions of Jacobson’s lemma and Cline’s formula, Rend. Circ. Matem. Palermo, Ser. 2, 67 (1), 105-114 (2018).
Review
For citations:
Hadji S. Further common spectral properties for some generalized inverses in a ring. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(1):52-65. (In Russ.) https://doi.org/10.26907/0021-3446-2025-1-52-65