

A new result on the existence of positive solutions for a class of fractional Kirchhoff-type systems with multiple parameters
https://doi.org/10.26907/0021-3446-2025-1-15-27
Abstract
This paper is devoted to the problem of existence of positive weak solutions for a class of fractional Kirchhoff-type systems with multiple parameters. By using the sub-supersolution method and some analysis techniques, we prove a new existence result. To the best of our knowledge, our results are new in the study of fractional Kirchhoff-type systems.
About the Authors
R. GuefaifiaSaudi Arabia
Rafik Guefaifia.
Buraydah, 51452
Т. Bouali
Algeria
Tahar Bouali.
Tebessa, 12002
S. H. Rasouli
Islamic Republic of Iran
Sayyed Hashem Rasouli.
Babol
References
1. Chipot М., Lovat В. Some remarks on nonlocal elliptic and parabolic problems, Nonlinear Anal. 30 (7), 4619-4627 (1997).
2. Kirchhoff G. Mechanik (Teubner, Leipzig, 1883).
3. Applebaum D. Levy processes — from probability to finance and quantum groups, Not. Amer. Math. Soc. 51 (11), 1336-1347 (2004).
4. Laskin N. Fractional quantum mechanics and Levy path integrals, Phys. Lett. A. 268 (4-6), 298-305 (2000).
5. Ali J., Shivaji R. Multiple positive solutions for a class of (p-q)-Laplacian systems with multiple parameters and combined nonlinear effects, Diff. Int. Equat. 22 (7-8), 669-678 (2009).
6. Ali J., Shivaji R. Positive solutions for a class of p-Laplacian systems with multiple parameters, J. Math. Anal. Appl. 335 (2), 1013-1019 (2007).
7. Ali J., Shivaji R. On positive solutions for classes of strongly coupled p-Laplacian systems, Elect. J. Diff. Equat., Conf. (16), 29-34 (2007).
8. Ali J., Ramaswamy М., Shivaji R. Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Diff. Int. Equat. 19 (6), 669-680 (2006).
9. Chung N.T. An existence result for a class of Kirchhoff type systems via sub and super solutions method, Appl. Math. Lett. 35, 95-101 (2014).
10. Rasouli S.H. On a mathematical model of thermal explosion with multiple parameters and nonlinear boundary conditions, Dynam. Contin., Discrete Impulsive Syst. Ser. A: Math. Anal. 28, 145-152 (2021).
11. Guefaifia R., Boulaaras S. Subsuper solutions method for elliptic systems involving (pi,... ,pm) Laplacian operator, Math. Meth. Appl. Sci. 43 (7), 4191-4199 (2020).
12. Afrouzi G.A., Rasouli S.H. On positive solutions for some nonlinear semipositone elliptic boundary value, Nonl. Anal. Model. Contr. 11 (4), 323-329 (2006).
13. Haiour M., Boulaaras S., BouizemY., Guefaifia R. Existence result for a Kirchhoff elliptic system with variable parameters and additive right-hand side via sub- and supersolution method, Bound. Value. Probl. 134, 1-9 (2020).
14. Hai D.D., Shivaji R. An existence result on positive solutions for a class of p-Laplacian systems, Nonlinear Anal. 56 (7), 1007-1010 (2004).
15. Chhetri M., Girg P., Hollifield E. Existence of positive solutions for fractional laplacian equations: theory and numerical experiments, Elect. J. Diff. Equat. 2020 (1-32) (2020).
16. Bisci G.M., Radulescu V.D., Servadei R. Variational methods for nonlocal fractional problems, Encyclopedia Math. Appl. 162 (Cambridge Univ. Press, 2016).
17. Nezza E.Di, Palatucci G., Valdinoci E. Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 136 (5), 521-573 (2012).
18. Ros-Oton X. Nonlocal elliptic equations in bounded domains: a survey, Publ. Matem. 60 (1), 3-26 (2016).
19. Dhanya R., Tiwari S. A multiparameter semipositone fractional Laplacian problem involving critical exponent, arXiv:1905.10062 (2019).
20. Azouz N., Bensedik A. Existence result for an elliptic equation of Kirchhoff-type with changing sign data, Funkcial. Ekvac. 55 (1), 55-66 (2012).
Review
For citations:
Guefaifia R., Bouali Т., Rasouli S.H. A new result on the existence of positive solutions for a class of fractional Kirchhoff-type systems with multiple parameters. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(1):15-27. (In Russ.) https://doi.org/10.26907/0021-3446-2025-1-15-27