Fixed points of transformation of a renormalization group in a generalized fermionic hierarchical model
https://doi.org/10.26907/0021-3446-2024-12-101-108
Abstract
A two-dimensional hierarchical lattice is considered, in which an elementary cell is represented by the vertices of a square. In the generalized hierarchical model, the distance between opposite vertices of a square differs from the distance between neighboring vertices and is a parameter of the new model. At each vertex of the lattice, the field is defined by a set of 4 generators of the Grassmann algebra. The Hamiltonian of the field is described by the interaction of the 4th degree. The transformation of the renormalization group in the space of coupling coefficients defining this interaction is defined as a nonlinear mapping. All branches of fixed points of this mapping are described.
About the Authors
M. D. MissarovRussian Federation
Mukadas Dmuhtasibovich Missarov
18 Kremlyovskaya str., Kazan, 420008
D. A. Khajrullin
Russian Federation
Dmitrij Airatovich Khajrullin
18 Kremlyovskaya str., Kazan, 420008
References
1. Dyson F.J. Existence of a phase-transition in a one-dimensional Ising ferromagnet, Commun. Math. Phys. 12, 91–107 (1969).
2. Missarov M.D. Renormalization Group Solution of Fermionic Dyson Model, Asympt. Combinat. Appl. Math. Phys., V.A.Malyshev and A.M.Vershik (eds.) (Kluwer Acad. Publ., Printed in Netherlands), 151–166 (2002).
3. Dragovich B., Khrennikov A.Yu., Kozyrev S.V. and Volovich I.V. On p-adic mathematical physics, p-Adic Numbers, Ultrametric Anal. and Appl. 1, 1–17 (2009).
4. Missarov M.D. New Variant of the Fermionic Model on the Hierarchical Two-Dimensional Lattice, p-Adic Numbers, Ultrametric Anal. and Appl. 12 (2), 163—170 (2020).
5. Миссаров М.Д., Хайруллин Д.А. Преобразование ренормализационной группы в обобщенной фермионной иерархической модели, Изв. РАН. Сер. матем. 87 (5), 164–176 (2023).
Review
For citations:
Missarov M.D., Khajrullin D.A. Fixed points of transformation of a renormalization group in a generalized fermionic hierarchical model. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(12):101-108. (In Russ.) https://doi.org/10.26907/0021-3446-2024-12-101-108