Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

On the Hyers–Ulam stability of Bernoulli’s differential equation

https://doi.org/10.26907/0021-3446-2024-12-85-93

Abstract

The aim of this paper is to present the results on the Hyers–Ulam–Rassias stability and the Hyers–Ulam stability for Bernoulli's differential equation. The argument makes use of a fixed point approach. Some examples are given to illustrate the main results.

About the Authors

R. Shah
Kohsar University Murree
Pakistan

Rahim Shah

Murree, 25000



N. Irshad
Kohsar University Murree
Pakistan

Natasha Irshad

Murree, 25000



References

1. Momoniat E., Myers T.G., Banda M., Charpin J. Differential Equation with Applications to Industry, Int. J. Diff. Equat. Article ID 491874 (2012).

2. Obloza M. Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prac. Mat. (13), 259–270 (1993).

3. Obloza M. Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prac. Mat. (14), 141–146 (1997).

4. Alsina C., Ger R. On Some Inequalities and Stability Results Related to the Exponential Function, J. Inequal. Appl. 2 (4), 373–380 (1998).

5. Jung S.-M. Hyers–Ulam stability of linear differential equations of first order, Appl. Math. Lett. 17 (10), 1135–1140 (2004).

6. Jung S.M. Hyers–Ulam stability of linear differential equations of first order, III, J. Math. Anal. Appl. 311 (1), 139–146 (2005).

7. Jung S.M. Hyers–Ulam stability of linear differential equations of first order, II, Appl. Math. Lett. 19 (9), 854–858 (2006).

8. Abdollahpour M.R., Najati A. Stability of linear differential equations of third order, Appl. Math. Lett. 24 (11), 1827–1830 (2011).

9. Abdollahpour M.R., Park C. Hyers–Ulam stability of a class of differential equations of second order, J. Comput. Anal. Appl. 18 (5), 899–903 (2015).

10. Abdollahpour M.R., Najati A., Park C., Rassias T.M., Shin D.Y. Approximate perfect differential equations of second order, Adv. Diff. Equat. 2012 (225) (2012).

11. Gordji M.E., Cho Y.J., Ghaemi M.B., Alizadeh B. Stability of the exact second order partial differential equations, J. Inequal. Appl. 2011 (8) (2011).

12. Li Y., Shen Y. Hyers–Ulam stability of linear differential equations of second order, Appl. Math. Lett. 23 (3), 306–309 (2010).

13. Lv J., Wang J., Liu R. Hyers–Ulam stability of linear quaternion–valued differential equations, Electronic J. Diff. Equat. (21), 1–15 (2023).

14. Suo L., Feckan M., Wang J. Controllability and observability for linear quaternion–valued impulsive differential equations, Commun. Nonlinear Sci. and Numerical Simulation 124, article 107276 (2023).

15. Suo L., Wang J. Stability of quaternion–valued impuslive differential equations, Rocky Mountain J. Math. 53 (1), 209–240 (2023).

16. Idriss E., Belaid B. Ulam–Hyers stability of some linear differential equations of second order, Examples and Counterexamples 3, article 100110 (2023).

17. Ciplea S.A., Lungu N., Marian D. Hyers–Ulam stability of a general linear partial differential equation, Aequat. Math. 97, 649–657 (2023).

18. Fakunle I., Arawomo P.O. Hyers–Ulam–Rassias stability of some perturbed nonlinear second order ordinary differential equations, Proyecciones J. Math. (Antofagasta) 42 (5), 1157–1175 (2023).

19. Makhlouf A.B., El-hady E., Arfaoui H., Boulaaras S., and Mchiri L. Stability of some generalized fractional differential equations in the sense of Ulam–Hyers–Rassias, Bound Value Probl. 2023 (8) (2023).

20. Luxemburg W.A.J. On the convergence of successive approximations in the theory of ordinary differential equations, II, Nederl. Akad. Wetensch. Proc. Ser. 20, 540–546 (1958).

21. Diaz J.B., Margolis B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 74 (2), 305–309 (1968).

22. Cˇadariu L., Radu V. On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber. 346, 43–52 (2004).


Review

For citations:


Shah R., Irshad N. On the Hyers–Ulam stability of Bernoulli’s differential equation. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(12):85-93. (In Russ.) https://doi.org/10.26907/0021-3446-2024-12-85-93

Views: 123


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)