Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

On the regularization of one class of sum-difference equations with periodic coefficients

https://doi.org/10.26907/0021-3446-2024-12-38-43

Abstract

Let $D$ be a square with the boundary $\Gamma$. A four-element linear sum-difference equation is considered in the class of functions that are holomorphic outside $D$ and vanish at infinity. The coefficients of the equation and the free term are holomorphic in $D$. The solution is sought in the form of a Cauchy-type integral over $\Gamma$ with unknown density. Its boundary values satisfy the Hölder condition on any compact set in $\Gamma$ that does not contain vertices. At most, logarithmic singularities are allowed at the vertices. To regularize the equation on $\Gamma$, a piecewise linear Carleman shift is introduced, which changes the orientation and still has fixed points. It is continuous at the vertices, but its derivatives are discontinuous at them. The regularization of uranium was carried out and the condition for its equivalence was found. Various applications and generalizations are indicated.

About the Authors

F. N. Garif’yanov
Kazan State Power Engineering University
Russian Federation

Farkhat Nurgayazovich Garif’yanov

51 Krasnosel’skaya str., Kazan, 420066



E. V. Strezhneva
Kazan National Research Technical University named after A.N. Tupolev – KAI
Russian Federation

Elena Vasil’evna Strezhneva

10 K. Marx str., Kazan, 420111



References

1. Напалков В.В. Уравнения свертки в многомерных пространствах (Наука, М., 1982).

2. Aksenteva E.P., Garifyanov F.N. Sum-difference equation for analytic functions generated by pentagon and its application, Lobachevskii J. Math. 37 (2), 101–104 (2016), DOI: 10.1134/S1995080216020037.

3. Гарифьянов Ф.Н. О регуляризации одного класса разностных уравнений, Сиб. матем. журн. 42 (5), 1012–1017 (2001).

4. Гарифьянов Ф.Н. Полиэлементные уравнения для функций, аналитических в плоскости с разрезами, Сиб. матем. журн. 57 (2), 276–281 (2016).

5. Михлин С.Г. Лекции по линейным интегральным уравнениям (Физматгиз, М., 1959).

6. Аксентьева Е.П., Гарифьянов Ф.Н. К исследованию интегрального уравнения с ядром Карлемана, Изв. вузов. Матем. 27 (4), 43–51 (1983).

7. Бибербах Л. Аналитическое продолжение (Наука, М., 1967).


Review

For citations:


Garif’yanov F.N., Strezhneva E.V. On the regularization of one class of sum-difference equations with periodic coefficients. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(12):38-43. (In Russ.) https://doi.org/10.26907/0021-3446-2024-12-38-43

Views: 70


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)