Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search

Non-negative matrices and their structured singular values

https://doi.org/10.26907/0021-3446-2023-10-36-45

Abstract

In this article, we present new results for the computation of structured singular values of non-negative matrices subject to pure complex perturbations. We prove the equivalence of structured singular values and spectral radius of perturbed matrix (M∆). The presented new results on the equivalence of structured singular values, non-negative spectral radius and non-negative determinant of (M∆) is presented and analyzed. Furthermore, it has been shown that for a unit spectral radius of (M∆), both structured singular values and spectral radius are exactly equal. Finally, we present the exact equivalence between structured singular value and the largest singular value of (M∆).

About the Authors

M. Rehman
Bukhara State University
Uzbekistan

Mutti-Ur Rehman.

11 M. Ikbol str., Bukhara, 200118



T. H. Rasulov
Bukhara State University
Uzbekistan

Tulkin H. Rasulov.

11 M. Ikbol str., Bukhara, 200118



B. R. Aminov
Akfa University
Uzbekistan

Bekzod R. Aminov.

264 Milliy Bog str., Tashkent, 111221



References

1. Doyle J. Analysis of feedback systems with structured uncertainties, IEE Proceedings on Control Theory and Applications, Inst. Electrical Engineers 129 (6), 242-250 (1982).

2. Braatz R.P., Young P.M., Doyle J.C., Morari M. Computational complexity of µ-calculation, IEEE Trans. Autom. Control 39 (5), 1000-1002 (1994).

3. Fan M., Tits A. Characterization and efficient computation of the structured singular value, IEEE Trans. Autom. Control 31 (8), 734-743 (1986).

4. Helton J.W. A numerical method for computing the structured singular value, Control Systems & control letters, Elsevier 10, 21-26 (1988).

5. Young P.M., Newlin M.P., Doyle J.C. et al. Practical computation of the mixed µ problem, in : American Control Conference, IEEE, 2190-2194 (1992).

6. Young P.M. The rank one mixed µ problem and Kharitonov-type analysis, Automatica, Elsevier 30 (12), 1899-1911 (1994).

7. Rehman M., Alzabut J., Ateeq T., Kongson J., Sudsutad W. The Dual Characterization of Structured and Skewed Structured Singular Values, Math., MDPI 10 (12), 2050 (2022).

8. Guglielmi N., Rehman M., Kressner D. A Novel Iterative Method to Approximate Structured Singular Values, SIAM J. Matrix Anal. and Appl. 38 (2), 361-386 (2017).

9. Packard A., Doyle J. The complex structured singular value, Automatica 29 (1), 71-109 (1993).

10. Troeng O. Five-Full-Block Structured Singular Values of Real Matrices Equal Their Upper Bounds, IEEE Control Systems Letters, IEEE 5 (2), 583-586 (2020).

11. Rehman M., Tayyab M., Anwar M.F. Computing µ-Values for Real and Mixed µ Problems, Math., MDPI 7 (9), 821 (2019).

12. Berman A., Plemmons R.J. Nonnegative Matrices in the Mathematical Sciences (SIAM, Classics Appl. Math., 1994).

13. Bo Z. Bounds for the spectral radius of nonnegative matrices, Math. Slovaca 51 (2), 179-183 (2001).

14. Schur I. Remarks on the theory of bounded bilinear forms with infinitely many variables (Walter de Gruyter, New York, 1911).

15. Nikiforov V. Revisiting Schur's bound on the largest singular value, arXiv preprint math/0702722 (2007).


Review

For citations:


Rehman M., Rasulov T.H., Aminov B.R. Non-negative matrices and their structured singular values. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2023;(10):36-45. (In Russ.) https://doi.org/10.26907/0021-3446-2023-10-36-45

Views: 144


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)