Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem
https://doi.org/10.26907/0021-3446-2024-2-3-21
Abstract
In order to solve a parabolic variational inequality with a nonlocal spatial operator and a one-sided constraint on the solution, a numerical method based on the penalty method, finite elements, and the implicit Euler scheme is proposed and studied. Optimal estimates for the accuracy of the approximate solution in the energy norm are obtained.
About the Authors
O. V. GlazyrinaRussian Federation
Olga Vladimirovna Glazyrina
18 Kremlyovskaya str., Kazan, 420008
R. Z. Dautov
Russian Federation
Rafail Zamilovich Dautov
18 Kremlyovskaya str., Kazan, 420008
D. A. Gubaidullina
Russian Federation
Dinara Airatovna Gubaidullina
18 Kremlyovskaya str., Kazan, 420008
References
1. Chipot M., Rodrigues J.-F. On a class of nonlocal nonlinear elliptic problems, ESAIM: Math. Model. and Numer. Anal. 26 (3), 447–467 (1992).
2. Chipot M., Lovat B. On the Asymptotic Behaviour of Some Nonlocal Problems, Positivity 3 (1), 65–81 (1999).
3. Chipot M. Elements of Nonlinear Analysis (Birkh¨auser Advanced Texts, Berlin, 2000).
4. Chang N.-H., Chipot M. Nonlinear nonlocal evolution problems, Rev. R. Acad. Cien. Exact. Ser. A. Mat. 97 (3), 423–445 (2003).
5. Chipot M., Valente V., Caffarelli G.V. Remarks on a nonlocal problem involving the Dirichlet energy, Rendiconti del Seminario Matem. della Univ. di Padova 110, 199–220 (2003).
6. Pavlova M.F. On the solvability of nonlocal nonstationary problems with double degeneration, Differ. Equat.47 (8), 1161–1175 (2011).
7. Глазырина О.В., Павлова М.Ф. О единственности решения одной нелокальной нелинейной задачи с сильно монотонным по градиенту пространственным оператором, Изв. вузов. Матем. (3), 92–95 (2012).
8. Glazyrina O.V., Pavlova M.F. On the solvability of an evolution variational inequality with a nonlocal space operator, Differ. Equat. 50 (7), 873–887 (2014)
9. Chaudhary S., Srivastava V., Kumar S., Srinivasan B. Finite element approximation of nonlocal parabolic problem, Numer. Methods for Partial Differ. Equat. 33 (3), 786–813 (2016).
10. Glazyrina O.V., Pavlova M.F. Study of the convergence of the finite-element method for parabolic equations with a nonlinear nonlocal spatial operator, Differ. Equat. 51 (7), 872–885 (2015).
11. Глазырина О.В., Павлова М.Ф. О сходимости явной разностной схемы для эволюционного вариационного неравенства с нелокальным пространственным оператором, Учен. зап. Казан. ун-та. Сер. физ.- матем. науки 157 (4), 5–23 (2015).
12. Dautov R.Z., Mikheeva A.I. Exact penalty operators and regularization of parabolic variational inequalities with in obstacle inside a domain, Differ. Equat. 44 (1), 77–84 (2008).
13. Savar´e G. Weak Solutions and Maximal Regularity for Abstract Evolution Inequalities, Adv. Math. Sci. Appl.(6), 377–418 (1996).
14. Savar´e G., Nochetto R., Verdi C. A Posteriori Error Estimates for Variable Time-Step Discretizations of Nonlinear Evolution Equations, Comm. Pure Appl. Math. 53, 525–589 (2000).
15. Dautov R.Z., Mikheeva A.I. Implicit Euler scheme for an abstract evolution inequality, Differ. Equat. 47 (8), 1130–1138 (2011).
16. Dautray R., Lions J.-L. Mathematical Analysis and Numerical Methods for Science and Technology. V. 5. (Springer-Verlag, Berlin, 1992).
17. Evans L.C. Partial Differential Equations (AMS, Providence, RI, 1998).
18. Tabata M., Uchiumi S. A genuinely stable Lagrange–Galerkin scheme for convection-diffusion problems, Japan J. Indust. Appl. Math. 33 (1), 121–143 (2016).
19. Павлова М.Ф., Глазырина О.В. Теорема единственности решения эволюционного вариационного неравенства с нелокальным пространственным оператором, в сб. : Матер. X Междунар. конф. Сеточные методы для краевых задач и приложения, 205–208 (Казан. фед. ун-т, Казань, 2014).
20. Dautov R.Z., Lapin A.V. Approximations of Evolutionary Inequality with Lipschitz-continuous Functional and Minimally Regular Input Data, Lobachevskii J. Math. 40 (4), 425–438 (2019).
21. Bramble J.H., Pasciak J.E., and Steinbach O. On the stability of the L 2 projection in H1 (Omega ), Math. Comp. 71 (237), 147–156 (2002).
22. Bank R.E. and Yserentant H. On the H1 -stability of the L2-projection onto finite element spaces, Numer. Math. 126, 361–381 (2014).
Review
For citations:
Glazyrina O.V., Dautov R.Z., Gubaidullina D.A. Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2024;(2):3-21. (In Russ.) https://doi.org/10.26907/0021-3446-2024-2-3-21