Preview

Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The Bochner—Martinelli integral operator for real analytic functions

https://doi.org/10.26907/0021-3446-2025-7-53-63

Abstract

Let D be a bounded domain in Cn (n > 1) with a real analytic connected boundary dD = Г. The Bochner-Martinelli integral (integral operator) M(f) is considered for real analytic functions f о n Г. It is shown th at the integral M (f) is real analytic up to Г. Iterations of the Bochner-Martinelli integral Mk(f) are considered. It is proved that they converge to a function holomorphic in D at k ^ to. The Bochner-Маrtinelli transform M(T)(z) is defined for analytical functionals T. It is proved that the iterations of Mk(T)(z) converge weakly to a CR-functional at k ^ to.

About the Authors

A. M. Kytmanov
Siberian Federal University
Russian Federation

Alexander Mechislavovich Kytmanov

79 Svobodny Ave.; Krasnoyarsk; 660041



S. G. Myslivets
Siberian Federal University
Russian Federation

Simona Glebovna Myslivets

79 Svobodny Ave.; Krasnoyarsk; 660041



References

1. Vladimirov V.S. Methods of the theory of functions of many complex variables (M.I.T. Press, Cambridge, Mass, 1966).

2. Shabat B.V. Introduction to complex analysis: Function of several variables. 2 (Amer. Math. Soc., Providence, 1992).

3. Range R.M. Holomorphic functions and integral representations in several complex variables (Springer–Verlag, 1986).

4. Kytmanov A.M. The Bochner-Martinelli integral and its applications (Basel, Boston, Berlin, Birkh¨auser, 1995).

5. G¨unter N.M. Potential theory and its applications to basic problems of mathematical physics (Ungar, New York, 1967).

6. Kytmanov A.M., Myslivets S.G. Multidimensional Integral Representations. Problems of Analytic Continuation (Springer Verlag, Basel, Boston, 2015).

7. Егоров Ю.А., Шубин М.А. Линейные дифференциальные уравнения с частными производными. Основы классической теории, Итоги науки и техники. Сер. Совр. пробл. матем. Фундамент. напр. 30, 5–255 (1988).

8. Brelot M. El´ements de la th´eorie classique du potentiel. ´ Centre de document univ. (Paris, 1959).

9. Grothendieck A. Sur les espaces de solutions d’une classe g´en´erale d’equations aux d´eriv´ees partielles, J. d’Analysee Math. (2), 243–280 (1953).

10. Komatsu H. Microlocal analysis in Gevrey classes and in complex domains, Lect. Notes Math. 1495, 161–236 (1991).

11. H¨ormander L. The analysis of linear partial differential operators. I (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983).

12. Komatsu H. An elementary theory of hyperfunctions and microfunctions, Part. diff. equat. Banach Center Publ. 27, 233–256 (Institute Math., Polish Acad. Sci., Warszawa, 1992).

13. Myslivets S.G. Integral operator of potential type for infinitely differentiable functions, Журн. СФУ. Сер. Матем. Физ. 17 (4), 464–469 (2024).

14. Романов А.В. Сходимость итераций оператора Мартинелли–Бохнера и уравнение Коши–Римана, Докл. АН СССР 242 (4), 780–783 (1978).

15. Kytmanov A.M., Myslivets S.G. Iterates of the Bochner–Martinelli integral operator in a ball, Журн. СФУ. Сер. Матем. Физ. 2 (2), 137–145 (2009).

16. Edwards R.E. Functional analysis: theory and applications (Dover, New York, 1994).

17. Polking J.C., Wells R.O. Boundary values of Dolbeault cogomology classes and a generalized Bochner–Hartogs theorem, Abh. Math. Semin. Univ. Hamburg 47, 3–24 (1978).


Review

For citations:


Kytmanov A.M., Myslivets S.G. The Bochner—Martinelli integral operator for real analytic functions. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(7):53-63. (In Russ.) https://doi.org/10.26907/0021-3446-2025-7-53-63

Views: 107


ISSN 0021-3446 (Print)
ISSN 2076-4626 (Online)