On the study of the Klein–Gordon equation in the Dunkl setting
https://doi.org/10.26907/0021-3446-2025-7-3-19
Abstract
In Dunkl theory on \BbbR n which generalizes classical Fourier analysis, we study the solution of the Klein–Gordon-equation defined by: Მ2t u - Δku = - m2u, u(x, 0) = g(x), Მtu(x, 0) = f(x), где m > 0, а Მ2t u denoting the second derivative of the solution u with respect to t, and Δku u the Dunkl Laplacian with respect to x where f and g being two functions in Ѕ(Rn), defining the initial conditions. An integral representation for its solution is obtained, which makes it possible to study certain properties. As a specific result, the energies associated with the Dunkl–Klein–Gordon equation are studied.
About the Authors
M. GaidiTunisia
Mohamed Gaidi
El Manar I, 2092
M. Bedhiafi
Tunisia
Mounir Bedhiafi
El Manar I, 2092,
Rue Jawaher Lel Nehru, Montfleury, 1089
References
1. Dunkl C.F. Differential-Difference operators associated to reflection groups, Trans. Amer. Math. Soc. 311 (1), 167–183 (1989).
2. de Jeu M.F.E. The Dunkl transform, Invent. Math. 113 (1), 147–162 (1993).
3. Dunkl C.F. Hankel transforms associated to finite reflection groups, Contemp. Math. 138, 123–138 (1992).
4. Dunkl C.F. Integral kernels with reflection group invariance, Canad. J. Math. 43 (6), 1213–1227 (1991).
5. Amri B., Gaidi M. L p - L q estimates for the solution of the Dunkl wave equation, Manuscripta Math. 159 (1), 379–396 (2019).
6. Amri B., Gaidi M. L p estimates for an oscillating Dunkl multiplier, Mediterr. J. Math. 15, article 85 (2018).
7. Littman W. The wave operator and Lp norms, J. Math. Mech. 12 (1), 55–68 (1963).
8. Mejjaoli H. Strichartz estimates for the Dunkl wave equation and application, J. Math. Anal. Appl. 346 (1), 41–54 (2008).
9. Mejjaoli H. Nonlinear generalized Dunkl-wave equations and applications, J. Math. Anal. Appl. 375 (1), 118–138 (2011).
10. Peral C. L p -estimates for the wave equation, J. Funct. Anal. 36 (1), 114–145 (1980).
11. Said S.B., {O}rsted B. The wave equation for Dunkl operators, Indag. Math. (N.S.) 16 (3–4), 351–391 (2005).
12. Strichartz R. Convolutions with kernels having singularities on a sphere, Trans. Amer. Math. Soc. 148 (2), 461–471 (1970).
13. Trim`eche K. The Dunkl intertwining operator on spaces of functions and distributions and integral representation of its dual, Int. Trans. Spec. Funct. 12 (4), 349–374 (2001).
14. Trim`eche K. Paley–Wiener theorems for the Dunkl transform and Dunkl translation operators, Int. Transf. Spec. Funct. 13 (1), 17–38 (2002).
15. R¨osler M., Voit M. Markov processes related with Dunkl operators, Adv. Appl. Math. 21 (4), 575–643 (1988).
16. Erd´eyli A. et al. Tables of Integral Transforms, Vol. II (McGraw-Hill, New York, 1954).
Review
For citations:
Gaidi M., Bedhiafi M. On the study of the Klein–Gordon equation in the Dunkl setting. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika. 2025;(7):3-19. (In Russ.) https://doi.org/10.26907/0021-3446-2025-7-3-19





















