Краткое сообщение, представленное С.М. Скрябиным

А.Н. АБЫЗОВ, Д.Т. ТАПКИН

КОЛЬЦА, МАТРИЦЫ НАД КОТОРЫМИ ПРЕДСТАВИМЫ В ВИДЕ СУММЫ ДВУХ ПОТЕНТНЫХ МАТРИЦ

Аннотация. Исследуется проблема нахождения условий, при которых из представимости каждого элемента a из поля P в виде a=f+g, где $f^{q_1}=f,\ g^{q_2}=g$ и q_1,q_2 — фиксированные натуральные числа >1, следует аналогичная представимость каждой квадратной матрицы над полем P. Предложен общий подход к решению этой проблемы. В качестве приложения полученных результатов, в частности, описаны поля и коммутативные кольца с обратимой двойкой, над которыми каждая квадратная матрица является суммой двух 4-потентных матриц.

Ключевые слова: q-потент, конечное поле, матрицы над конечными полями.

УДК: 512.552

DOI: 10.26907/0021-3446-2023-12-90-94

Введение

В [1] показано, что если R — ненулевое кольцо и n — натуральное число > 1, то в кольце $M_n(R)$ существует матрица, не представимая в виде суммы двух идемпотентных матриц. В связи с этим результатом интересной является задача об описании колец и, в частности, полей, квадратные матрицы над которыми представимы в виде суммы потентных матриц, изученная в последнее время в ряде работ. В [2] доказано, что над полем F каждая квадратная матрица представима в виде суммы трех идемпотентных матриц в точности тогда, когда поле F изоморфно либо \mathbb{F}_2 , либо \mathbb{F}_3 . Также в данной статье описаны редуцированные коммутативные кольца, над которыми каждая квадратная матрица представима в виде суммы трех идемпотентных матриц. В работе [3] показано, что если q — натуральное число > 1, то каждая квадратная матрица в точности тогда, когда F — конечное поле и q — 1 делится на |F|-1. В [4] показано, что если F — поле, не изоморфное полю \mathbb{F}_3 , и q — нечетное натуральное число > 1, то каждая квадратная матрица над F представима в виде суммы идемпотентной матрицы и q-потентной матрицы в точности тогда, когда над полем F каждая квадратная матрица представима в виде суммы идемпотентной матрицы и q-потентной матрицы и

Поступила в редакцию 25.09.2023, после доработки 25.09.2023. Принята к публикации 26.09.2023.

Благодарности. Работа поддержана грантом Российского научного фонда и Кабинета Министров Республики Татарстан (проект № 23-21-10086) и выполнена в рамках реализации Программы развития Научно-образовательного математического центра Приволжского федерального округа (соглашение № 0075-02-2023-944).

матрицы. В [5] доказано, что каждая матрица на полем F представима в виде суммы двух трипотентных матриц в точности тогда, когда поле F изоморфно одному из полей: \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_5 . В данной статье доказано, что если R — коммутативное кольцо, у которого $2 \in U(R)$, то каждая матрица над R представима в виде суммы двух трипотентных матриц в точности тогда, когда в R выполнено тождество $x^5 = x$.

Пусть $q_1, q_2 \in \mathbb{N} \setminus \{1\}$ и R — кольцо. Будем говорить, что элемент $f \in R$ допускает (q_1, q_2) -разложение, если $f = \alpha + \beta$, где $\alpha^{q_1} = \alpha$ и $\beta^{q_2} = \beta$. При этом само разложение $f = \alpha + \beta$ будем называть (q_1, q_2) -разложением.

В настоящей работе исследуется следующая проблема: выяснить при каких условиях на поле P и натуральные числа $q_1, q_2 \in \mathbb{N} \setminus \{1\}$ из (q_1, q_2) -разложимости каждого элемента P следует (q_1, q_2) -разложимость любой матрицы из $M_n(P)$ для всякого натурального числа n.

Известно несколько примеров, когда из (q_1,q_2) -разложимости каждого элемента поля P не следует (q_1,q_2) -разложимость каждой квадратной матрицы над полем P. Согласно ([5], пример 10) в $M_3(\mathbb{F}_3)$ существует матрица, которая не представима в виде суммы идемпотента и трипотента, в то время как в поле \mathbb{F}_3 каждый элемент есть сумма идемпотента и трипотента. Также согласно ([4], пример 16) существуют квадратные матрицы над полем \mathbb{F}_{2^k} , которые не представимы в виде суммы идемпотентой матрицы и 2^k -потентой матрицы. Компьютерные эксперименты показывают, что если каждый элемент поля F допускает (q_1,q_2) -разложение, но для некоторого $n \in \mathbb{N}$ существует матрица в кольце $M_n(F)$, которая не допускает (q_1,q_2) -разложение, то этот случай сводится к одному из выше перечисленных.

1. Основные результаты

Следующие две гипотезы основаны на компьютерных экспериментах и полученных раннее результатах.

Гипотеза 1. Пусть F — конечное поле нечетной характеристики, |F| > 3 и $q_1, q_2 \in \mathbb{N} \setminus \{1\}$. Если все элементы поля F допускают (q_1, q_2) -разложение, то и для любого $n \in \mathbb{N}$ все матрицы из $M_n(F)$ допускают (q_1, q_2) -разложение.

Будем называть элемент r кольца R нетривиальным q-потентом, если r является q-потентом и r отличен от 0 и 1.

Гипотеза 2. Пусть F — конечное поле характеристики 2, $q_1, q_2 \in \mathbb{N} \setminus \{1, 2\}$ и в поле F существуют как нетривиальные q_1 -потенты, так и нетривиальные q_2 -потенты. Если все элементы поля F допускают (q_1, q_2) -разложение, то и для любого $n \in \mathbb{N}$ все матрицы из $M_n(F)$ допускают (q_1, q_2) -разложение.

Согласно следующему утверждению гипотезу 1 достаточно доказать в случае, когда хотя бы одно из чисел q_1 или q_2 является четным.

Предложение. Пусть F — конечное поле нечетной характеристики и q_1, q_2 — нечетные натуральные числа > 1. Если каждый элемент из поля F допускает (q_1, q_2) -разложение, то и для любого $n \in \mathbb{N}$ каждая матрица из $M_n(F)$ допускает (q_1, q_2) -разложение.

Следующее утверждение непосредственно следует из предложения 1 и того факта, что в каждом конечном поле каждый элемент представим в виде суммы двух квадратов.

Следствие. Если F — конечное поле порядка q и $q \equiv 1 \pmod 4$, то каждая квадратная матрица над полем F представима в виде суммы двух $\frac{q+1}{2}$ -потентных матриц.

Теорема 1. Заключения гипотез 1 и 2 выполняются для всех полей F таких, что $|F| \le 7$.

Следующая гипотеза была проверена на компьютере для полей $7 < |F| \le 2000$ и всевозможных разложений в данных полях.

Гипотеза 3. Пусть F — конечное поле, |F| > 7, $q_1, q_2 \in \mathbb{N}$, $4 \le q_1 \le q_2$ и $q_1 - 1$, $q_2 - 1 \mid |F| - 1$. Если каждый элемент поля допускает (q_1, q_2) -разложение, то выполняется хотя бы одно из двух условий:

- (1) (a) в поле F существует по крайней мере три различных ненулевых q_2 -потента, которые представимы в виде $-(\alpha_1 + \alpha_2)$, где α_1, α_2 различные q_1 -потенты;
 - (b) для любого ненулевого элемента $f \in F$ найдутся различные ненулевые q_2 потенты $\beta_1, \beta_2 \in F$ и ненулевой q_1 -потент $\gamma \in F$ такие, что $(\beta_1 + \beta_2) + \gamma = f$.
- (2) (a) в поле F существует по крайней мере три различных ненулевых q_1 -потента, которые представимы в виде $-(\alpha_1 + \alpha_2)$, где α_1, α_2 различные q_2 -потенты;
 - (b) для любого ненулевого элемента $f \in F$ найдутся различные ненулевые q_1 потенты $\beta_1, \beta_2 \in F$ и ненулевой q_2 -потент $\gamma \in F$ такие, что $(\beta_1 + \beta_2) + \gamma = f$.

Одной из центральных теорем данной статьи является следующий результат, который сводит проверку выполнимости гипотез 1 и 2 к исследованию свойств элементов полей.

Теорема 2. Если гипотеза 3 верна, то заключения гипотез 1 и 2 выполняются для всех полей F таких, что |F| > 7.

Гипотезы 1 и 2 тесно связаны с проблемой описания полей, матрицы над которыми допускают (q_1,q_2) -разложение, где q_1,q_2 — фиксированные натуральные числа > 1. В качестве иллюстрации приложений полученных выше результатов решим эту проблему в некоторых частных случаях, основываясь на том факте, что для полей малых порядков согласно теоремам 1 и 2 гипотезы 1 и 2 проверяются непосредственно.

Теорема 3. Пусть R — область целостности. Следующие условия эквивалентны:

- (1) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы идемпотента и 7-потента;
- (2) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы трипотента и 4-потента;
- (3) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы двух 4-потентов;
- (4) R изоморфно одному из полей \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 или \mathbb{F}_7 .

Теорема 4. Если R – коммутативное кольцо и $2 \in U(R)$, то следующие условия равносильны:

- (1) для каждого натурального числа n в кольце $M_n(R)$ всякая матрица представима в виде суммы двух 4-потентных матриц;
- (2) для некоторого натурального числа n в кольце $M_n(R)$ всякая матрица представима в виде суммы двух 4-потентных матриц;
- (3) в кольце R выполнено тождество $x^7 = x$.

Теорема 5. Пусть R — область целостности. Следующие условия эквивалентны:

- (1) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы идемпотента и 9-потента:
- (2) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы трипотента и 5-потента;
- (3) R изоморфно одному из полей \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_5 или \mathbb{F}_9 .

Теорема 6. Если R – коммутативное кольцо и $2 \in U(R)$, то следующие условия равносильны:

- (1) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы идемпотента и 9-потента;
- (2) для некоторого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы идемпотента и 9-потента;
- (3) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы трипотента и 5-потента;
- (4) для некоторого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы трипотента и 5-потента;
- (5) в кольце R выполнено тождество $x^9 = x$.

Теорема 7. Пусть R — область целостности. Следующие условия эквивалентны:

- (1) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы трипотента и 7-потента;
- (2) для каждого $n \in \mathbb{N}$ всякая матрица из $M_n(R)$ представима в виде суммы 4-потента и 5-потента;
- (3) R изоморфно одному из полей \mathbb{F}_2 , \mathbb{F}_3 , \mathbb{F}_4 , \mathbb{F}_5 или \mathbb{F}_7 .

Литература

- [1] Hirano Y., Tominaga H. Rings in which every element is the sum of two idempotents, Bull. Aust. Math. Soc. 37 (2), 161–164 (1988).
- [2] Tang G., Zhou Y., Su H. Matrices over a commutative ring as sums of three idempotents or three involutions, Linear Multilinear Algebra 67 (2), 267-277 (2019).
- [3] Абызов А.Н., Мухаметгалиев М.И. *О некоторых матричных аналогах малой теоремы Ферма*, Матем. заметки **101** (2), 163–168 (2017).
- [4] Абызов А.Н., Тапкин Д.Т. Кольца, матрицы над которыми представимы в виде суммы идемпотентной матриы и q-потентной матрицы, Сиб. матем. журн. **62** (1), 3–18 (2021).
- [5] Abyzov A.N., Tapkin D.T. When is every matrix over a ring the sum of two tripotents? Linear Algebra and Appl. 630 (3), 316-325 (2021).

Адель Наилевич Абызов

Казанский федеральный университет,

ул. Кремлевская, д. 18, г. Казань, 420008, Россия,

e-mail: adel.abyzov@kpfu.ru

Даниль Тагирзянович Тапкин

Казанский федеральный университет,

ул. Кремлевская, д. 18, г. Казань, 420008, Россия,

e-mail: danil.tapkin@yandex.ru

A.N. Abyzov and D.T. Tapkin

Rings, matrices over which are representable as the sum of two potent matrices

Abstract. This paper investigates conditions under which representability of each element a from the field P as the sum a = f + g, with $f^{q_1} = f$, $g^{q_2} = g$ and q_1, q_2 are fixed integers >1, implies a similar representability of each square matrix over the field P. We propose a general approach to solving this problem. As an application we describe fields and commutative rings with 2 is a unit, over which each square matrix is the sum of two 4-potent matrices.

Keywords: q-potent, finite field, matrices over finite fields.

Adel Nailevich Abyzov Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia,

 $\verb"e-mail: adel.abyzov@kpfu.ru"$

Danil' Tagirzyanovich Tapkin Kazan Federal University, 18 Kremlyovskaya str., Kazan, 420008 Russia,

e-mail: danil.tapkin@yandex.ru